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Abstract
An analysis of the Kimura 3ST model of DNA sequence evolution is given on
the basis of its continuous Lie symmetries. The rate matrix commutes with a
U(1) × U(1) × U(1) phase subgroup of the group GL(4) of 4 × 4 invertible
complex matrices acting on a linear space spanned by the four nucleic acid base
letters. The diagonal ‘branching operator’ representing speciation is defined,
and shown to intertwine the U(1)×U(1)×U(1) action. Using the intertwining
property, a general formula for the probability density on the leaves of a binary
tree under the Kimura model is derived, which is shown to be equivalent to
established phylogenetic spectral transform methods.

PACS numbers: 87.23.Kg, 89.75.Hc, 02.50.Ey, 02.50.Ga, 03.65.Fd

The use of Markov models of stochastic change to taxonomic character distributions is
part of the standard armoury of techniques for describing mutations and inferring ancestral
relationships between taxa. For the simplest models, symmetries of the rate matrix under
discrete group actions (Z2 for binary types, or Z2 × Z2 for DNA or RNA bases in molecular
applications, for example) have been used to good effect in simplifying phylogenetic analysis
(for references, see below). In particular, much attention has been centred on properties of the
frequently used Kimura 3ST model [1] which possesses such symmetry.

A general framework for phylogenetic branching models is as follows [2]. By assumption,
different taxonomic units are identified, and classified by a set of defining characteristics: for
example, based on morphological features or on sequence data, say, for a particular gene
or protein. To each taxon is ascribed a character probability density, and it is the task of
phylogenetic reconstruction to infer ancestral relationships amongst a group of related taxa,
given sample character frequencies.

In this letter, we describe an approach to the analysis of symmetries of such models
using continuous transformation groups. Rather than identifying the character types with
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elements of a (non-Abelian or Abelian) discrete ‘colour’ group which patterns the rate matrix
for transitions between types into orbit classes (see [3] and references therein), we look at
linear transformations on the ‘character space’ spanned by the character types, and consider
(complex, invertible) matrices which commute with the rate matrix. As we shall show, this
approach, when implemented in the Kimura model, leads to an analysis which is well adapted
to the established Hadamard discrete Fourier transform formalism [3–6], but which importantly
has potential generalizations going beyond the binary colour groups.

Formally, let {pa(t), a = 1, . . . , K} be the theoretical probabilities that the system has
character a = 1, 2, . . . , K , respectively. Introducing unit vectors ea, a = 1, . . . , K the state
vector representing the system3

p(t) = p1(t)e1 + p2(t)e2 + · · · + pK(t)eK (1)

is subject to linear time evolution4

d

dt
p(t) = R̂ · p(t) (2)

where the operator R̂ is a suitable K × K Markov rate matrix. It is natural to decompose R̂ as

R̂ = λ(−11 + T̂ ) (3)

where the traceless part T̂ belongs by definition to the Lie algebra sl(K) (see below for the
K = 4 case). The usual (positive) rates for substitution between different characters are thus
the off-diagonal elements of T̂ . A formal solution to (2) for time-independent rates is

p(t) = e−λt · eλtT̂ · p(0). (4)

The vector p(t) (a priori in C
K ) is a probability density if each pa is real, pa � 0 and∑

a pa = 1. Consistent with the time dependence imposed by the master equation, given
a starting density, probability conservation is implemented by demanding that R̂ is a unit
column sum matrix. Introducing the vector � representing the sum of all the unit vectors in
the distinguished basis

� = e1 + e2 + · · · + eK

probability conservation requires that the dual �⊥ (the row vector with unit entries) is
annihilated by R̂ regarded as an operator on the dual space, �⊥ · R̂ = 0. Equivalently,
�⊥ is a left unit eigenvector of T̂ .

In the Kimura 3ST model [1] the characters a are of course the standard nucleic acid base
letters A,G,U and C, and the rate matrix is5

R̂AA R̂AG R̂AU R̂AC

R̂GA R̂GG R̂GU R̂GC

R̂UA R̂UG R̂UU R̂UC

R̂CA R̂CG R̂CU R̂CC

 = −(α + β + γ )11 +


0 α β γ

α 0 γ β

β γ 0 α

γ β α 0

 (5)

3 Since the description is for a species or population, the possible interdependence of characters (as in the heritability of
traits amongst individuals) is not directly addressed at this level but becomes an empirical issue of the appropriateness
of the choice of characters.
4 In order to make the models tractable, the rate matrix is assumed constant for each taxon, although the parameters can
be adjusted between taxa (to allow for different metabolic rates for example), as described below. The time-dependent
case is treated in [7] in a different context.
5 The rate parameters α, β, γ describe base transitions, and two classes of transversions, respectively. The 3ST
model is but one member of a hierarchy of base substitution models [8], which includes non-symmetric cases which
attempt to account for properties such as differing base pair binding energies. Despite its simplicity, the 3ST model
does describe some datasets adequately (see, for example [5], and the concluding remarks below).
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wherein the total change rate parameter in (3) above is λ = α + β + γ , and the traceless part
of the rate operator can be written in the form

T̂ = α

α + β + γ
K̂α +

β

α + β + γ
K̂β +

γ

α + β + γ
K̂γ . (6)

Remarkably the three Kimura matrices

K̂α =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 K̂β =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 K̂γ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (7)

provide a maximal set of commuting generators for the Lie algebra sl(4) and thus can be
chosen as the basis for a Cartan subalgebra; equivalently there exists a transformation of
the basis spanned by eA, eG, eU and eC onto a new basis, in which the Kimura generators
are diagonal (with doubly degenerate eigenvalues ±1 by the traceless property, and the fact
that they are square roots of 11). This transformation is well known to be generated by the
Hadamard matrix H, which sends K̂i as matrices to HK̂iH−1, i ∈ {α, β, γ }:

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 HK̂αH−1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



HK̂βH−1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 HK̂γ H−1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

Note finally that H can be decomposed as a tensor product of two-dimensional forms

H = h ⊗ h h =
[

1 1
1 −1

]
. (8)

Thus far, we have recovered the standard analysis, with the emergence of the Hadamard
transformation as the key to resolving the Kimura model. For (multi)-taxon probability
densities evolving independently, the time evolution after time t is by extension of (4)

P(t) = e−λt · eλtT̂ · P(0) (9)

where P is a tensor of rank �2 carrying the probability density on a sample space spanned by
the appropriate Cartesian product of character sets, and T̂ := T̂ ⊗ 11 ⊗ · · · 11 + 11 ⊗ T̂ · · · + · · ·
the corresponding off-diagonal rate operator lifted to the tensor product space. Clearly, the
higher rank Hadamard operator H ⊗ H ⊗ · · · again implements the correct diagonalization
in this case. The work of [3–6] using discrete Fourier analysis on trees establishes that,
remarkably, even when the multi-taxon system has evolved via a phylogenetic tree, the
Hadamard transform technique still applies.

In order to pursue the alternative analysis via Lie symmetries, we exploit the observation
that the Kimura operators K̂i, i ∈ {α, β, γ } provide a Cartan subalgebra for transformations
belonging to the Lie algebra sl(4) of the group SL(4) of (complex) matrices6. Clearly the
Hadamard basis vectors ha := H · ea are simultaneous eigenvectors of the Kimura generators.
In a general representation of SL(4), the eigenvalues of the Kimura generators simply
6 SL(4) � GL(4)/C

× where invertible matrices are factored by the multiplicative group of complex numbers
corresponding to their (nonzero) determinants.
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correspond to the weight decomposition with respect to the Cartan subalgebra. Apart from the
overall scaling by e−λt , the Markov transition operator e−λt · eλtT̂ appends an exponential time
dependence given by the sum of these weights, multiplied by the Kimura ‘charge’ parameters
α, β, γ . Thus, in principle, provided the Markov model respects the symmetry, its spectral
properties, and hence the time development of a multi-taxon density, can be deduced from an
appropriate weight decomposition of the corresponding tensor representation of SL(4).

To confirm that the analysis does indeed carry through in the presence of phylogenetic
trees, we now turn to the description of the branching process itself. The usual formalism
of stochastic models of base substitution [8] can conveniently be encapsulated via a linear
operator δ, which changes the state vector representing a single taxon, to that representing
independent progeny after branching7, defined by

δ · ea = ea ⊗ ea a = 1, . . . , K. (10)

For K = 4 in the nucleotide basis we have

δ · eA = eA ⊗ eA δ · eG = eG ⊗ eG

δ · eU = eU ⊗ eU δ · eC = eC ⊗ eC

(11)

so that, when applied to a vector p representing the density on bases for one taxon, we have

p = pAeA + pGeG + pUeU + pCeC

→ δ · p = pAeA ⊗ eA + pGeG ⊗ eG + pUeU ⊗ eU + pCeC ⊗ eC

(12)

after which evolution proceeds for the model on two taxa (with all operations lifted to the
tensor product space carrying the Cartesian square of the character set, as described by (9)
above).

A stochastic model may be said to possess a symmetry under a continuous transformation
group G if the rate matrix commutes with its generators, and hence intertwines the group
action. Formally if the action is p(t) → p′(t) ≡ g · p(t) then the master equation (2) retains
its form, for all g ∈ G and for arbitrary p(t), as

dp′(t)
dt

= R̂ · p′(t)

iff gR̂ = R̂g, or [R̂, K̂] = 0 with K̂ a generator of the group G (g ∼ eK̂). Similarly a
branching operator δ admits a symmetry under such transformations if it intertwines the action
of G on the character space of a single taxon, with some action on the tensor product space

δ ◦ g = g̃ ◦ δ. (13)

Such symmetry considerations lead to useful ways of analysing the tree structure of
general phylogenetic branching processes, which we hope to take up in a separate work. Here
we examine the implications for the Kimura model as a first example. It is clear from the
above remarks that the rate matrix admits a GL(1) × GL(1) × GL(1) � C

× × C
× × C

×

group of symmetry tansformations. For purposes of weight labelling, and to make contact
with standard group representation theory, it is convenient to consider the generators of the
corresponding unitary phase subgroup U(1) × U(1) × U(1), with the convention that group
elements associated with compact generators within SL(4) have pure imaginary parameters,
whereas those with noncompact generators have real parameters. Turning to the diagonal
branching operator (10), it is obvious that any symmetry generator acting as a permutation σ

on the basic unit vectors ea, σ · ea = eσa , will satisfy δ ◦ σ · ea = eσa ⊗ eσa = σ ⊗ σ ◦ δ · ea .

7 A dynamical, many-body formulation of phylogenetic branching processes has been presented in [7].
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In particular the Kimura generators in the distinguished basis do indeed permute the nucleotide
unit vectors eA, eG, eU , eC and hence themselves have the diagonal intertwining property8:

δ ◦ K̂i = K̂i ⊗ K̂i ◦ δ i ∈ {α, β, γ }. (14)

Thus we conclude that the Kimura model has U(1) × U(1) × U(1) symmetry, both in the
sense of commuting with the rate matrix, and in the intertwining property for the branching
operator.

With the above preliminaries we sketch briefly the way in which the above algebraic
structure can be applied to an analysis of the Kimura model for phylogenetic trees, which is
consistent with the Fourier transform methods. Fixing a rooted tree on L leaves, the full time
evolution from the initial root density to the leaf density can be represented abstractly as a
product of strings of terms of the form

· · · (M ′
1 ⊗ M ′

2 ⊗ · · · ⊗ M ′
r+1) · (11 ⊗ 11 ⊗ · · · δ ⊗ · · · ⊗ 11) · (M1 ⊗ M2 ⊗ · · · ⊗ Mr) · · · (15)

where it is implied that, for the time slices �t,�t ′ of the tree under consideration, with r taxa
evolving, a branching event9 took place on a particular edge leading to r + 1 taxa evolving, the
M,M ′ being simply the appropriate Markov transition matrices e�tR̂, e�t ′R̂′

. The intertwining
property (14) can now be used to pull all the δ operators back to the root node, so that the final
expression for the leaf density is of the form of products of exponentials of tensor products of
Kimura operators, acting on the fully branched state10

δ(L−1)p(0) = pA(0)eA ⊗ eA · · · ⊗ eA + pG(0)eG ⊗ eG · · · ⊗ eG

+ pU(0)eU ⊗ eU · · · ⊗ eU + pC(0)eC ⊗ eC · · · ⊗ eC. (16)

Working in the Hadamard basis allows the exponentials to be diagonalized in terms of the
weights of the tensor product states under the induced U(1) × U(1) × U(1) action. The
combinatorics of the tree is of course encoded, in that the change on each edge explicit in (15)
is inherited by the differing total weights of each factor, and hence different exponential time
dependence, in the L edges emanating from (16) above.

As an example we specialize to the binary character case (the symmetric two colour model
[9, 10]). Suppose the character set is {Y,R} for definiteness. The analogue of the Kimura
operator is k̂, and there is only one rate parameter α with R̂ = α(−11 + k̂). The analogue of
(8) is

k̂ =
[

0 1
1 0

]
h =

[
1 1
1 −1

]
ĥkh−1 =

[
1 0
0 −1

]
. (17)

Consider the descending rooted 4-leaf tree (1(2(34))) (see figure 1). Labelling the non-leaf
edges 5, 6 in order of ascending level away from the leaves, define the total edge change
parameters (including time intervals) as

αe := �teα e ∈ {1, 2, . . . , 6}
(effectively allowing the α parameter in the rate matrix to be edge dependent), and also the
leaf operators

k̂1 = k̂ ⊗ 11 ⊗ 11 ⊗ 11 k̂2 = 11 ⊗ k̂ ⊗ 11 ⊗ 11

k̂3 = 11 ⊗ 11 ⊗ k̂ ⊗ 11 k̂4 = 11 ⊗ 11 ⊗ 11 ⊗ k̂.

8 In the case of Abelian algebras, a ‘group-like’ coproduct K̂ → K̂ ⊗ K̂ gives a coassociative coalgebra structure,
and the tensor product spaces carry a consistent action.
9 See also [7].
10 The operator δ is coassociative, (11 ⊗ δ) ◦ δ = (δ ⊗ 11) ◦ δ ≡ δ(2). Note that no off-diagonal terms such as eC ⊗ eU

appear in the repeated application of δ to the initial state p(0).
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α1 α2

α6

α5

α4α3

+ - + -

+

-

1 2 3 4

Figure 1. Descending 4-leaf tree (1(2(34)) with edges 1, 2, 3, 4, 5, 6 and leaf decoration +, −, +, −
indexing a component of Pleaf in the Hadamard basis. With signs propagated multiplicatively to
the remaining edges, and with the overall −∑

e αe term, the exponent becomes −2(α2 + α4 + α5),
corresponding to the edge path sum for the split {2, 4} ∪ {1, 3}.

Applying (14), (15), we have for the leaf density

Pleaf = exp

(
−

∑
e

αe

)
exp(α1̂k1 + α2̂k2 + α3̂k3 + α4̂k4 + α5̂k5 + α6̂k6)δ

3p(0)

where also

k̂5 = 11 ⊗ 11 ⊗ k̂ ⊗ k̂ k̂6 = 11 ⊗ k̂ ⊗ k̂ ⊗ k̂. (18)

The composite operator in (18) acts in the Hadamard basis to give a signed sum of edge
parameters, with the signs determined by products of k̂-weights, eigenvalues of the various
leaf operators acting on δ3p(0) = pY (0)eY ⊗eY ⊗eY ⊗eY +pR(0)eR ⊗eR ⊗eR ⊗eR expanded
via the inverse Hadamard transform (see (17)),

eY = 1
2 (h+ + h−) eR = 1

2 (h+ − h−). (19)

Multiplying through by the overall prefactor, the positively signed edge parameters cancel in
the exponent. For example, the coefficient of h+ ⊗ h− ⊗ h+ ⊗ h− in the expansion of (18)
becomes

P+−+− = (
1
2

)4
e−2(α2+α4+α5)pY (0) +

(
1
2

)2(− 1
2

)2
e−2(α2+α4+α5)pR(0).

As explained above, the use of (14), (15) in generalizing (18) to an arbitrary tree T
amounts to considering how the symmetry group on the linear space spanned by the evolving
probability density of a single system, extends after branching to transformations acting on the
L-fold tensor product (in the Kimura 3ST model, the symmetry group is U(1)×U(1)×U(1),
and in the symmetric two-colour model just U(1)). Taking the binary case for simplicity, the
general form of (18) reads (cf (9) and (4))

Pleaf = e− ∑
e αe · ek̂T · δ(L−1)p(0). (20)

The operator k̂T is essentially the induced generator of U(1) after pulling back through the
branching nodes of the tree. We define (following the above example)

k̂(e) =
∏
	∈Te

k̂	
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for each edge e to be the product, over all leaves in the subtree Te determined by e, of the leaf
operators

k̂	 = 1 ⊗ 1 ⊗ · · · k̂ ⊗ 1 ⊗ · · · ⊗ 1

(̂k acting on the 	th place in the L-fold tensor product—obviously if 	 is a leaf edge, k̂(	) ≡ k̂	).
Then

k̂T =
∑

e

αêk(e).

Finally, δL−1p(0) is the maximally branched state (as would derive from a multifurcating
branching). Note however, that this decomposition does not imply that the leaf density is
equivalent to independent stochastic evolution from this initial branched state—the operator
k̂T is not of separable form.

While (20) is basis independent, it is obviously beneficial to analyse the components of
each side in terms of the (tensor products of) Hadamard vectors (eigenstates of the k̂ operator),
as both the separable and non-separable parts of the tree operator k̂T are diagonal in this basis.
Briefly the algorithm for determining the weight attributed to a term of Pleaf in the Hadamard
basis can be described as follows (see figure 1; for a formal analysis, see [12]). Take an arbitrary
binary tree, and fix a tree ‘split’, to be associated with the coefficient, in the expansion of Pleaf ,
of the basis element consisting of the L-fold tensor product of − Hadamard vectors on a chosen
subset of distinguished leaves, with + Hadamard vectors at the remaining non-distinguished
leaf positions. On the graph of the tree assign − signs to the distinguished leaf edges,
and + signs to the remainder, and propagate signs to the remaining edges multiplicatively
(e.g. adjacent siblings with − signs will generate a + sign on their ancestral edge). The
corresponding signed sum of edge parameters αe is precisely the exponent generated by the
action of k̂T on this basis element. After the overall exp

(−∑
e αe

)
prefactor is multiplied

through, only the negatively signed edge terms are present in the exponent (with coefficient
−2). Finally the numerical factors accompanying the terms proportional to pY (0) and pR(0)

can easily be read off from (19).
It is clear that the above presentation is equivalent to the standard discrete Fourier analysis

on tree techniques involving the Hadamard transform [3–6]. Specifically, the surviving edge
parameters which provide the argument of the exponential are nothing but the nonintersecting
path edge sums for a given leaf split, as emerges from the Hadamard transform in edge space.
The standard Z2 ×Z2 colour symmetry is of course inherent in the Hadamard matrix, which is
also mandatory for the simultaneous diagonalization of the Kimura generators. However, from
the viewpoint of Lie symmetries, the latter determine three (infinite) continuous symmetry
groups, rather than being identified with the three non-unit elements of a discrete group.
Crucial for our derivation is the coproduct property (13), and the fact that the combinatorics
of the tree determines the final action of the symmetry group on the L-fold tensor product
carrying the leaf probability density.

In this letter we have provided a framework for the analysis of phylogenetic branching
models on the basis of continuous transformation symmetries of the rate matrix and the
branching operator. The formalism can be applied to the Kimura 3ST (and also the 2P) model,
as well as the symmetric binary character model [9, 10] and it reproduces the standard spectral
transform analysis. In summary, the main features of our work are as follows. (i) Given that
the Fourier–Hadamard transform methods based on the Kinura models are tools for practical
phylogenetic analysis for some datasets [5], it is important to supplement their established
formal basis [4] with new derivations and insights. Besides generalizations (see below), the
availability of explicit transform methods for nontrivial classes of model can be a significant
analytical tool for rigorous examination of issues of tree reconstruction and phylogenetic
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inference (see, for example, [11]). (ii) Our approach extends to any model where the off-
diagonal rates can be associated with an Abelian subalgebra of SL(K), whose generators have
the form of permutation matrices (so that the intertwining property holds). For example, in
place of (5)–(7) for K = 4 we could consider the (non-symmetric) K = 3 model


̂α =
0 1 0

0 0 1
1 0 0

 
̂β =
0 0 1

1 0 0
0 1 0


T̂ = α

α + β

̂α +

β

α + β

̂β λ = (α + β).

(21)

The above analysis starting from (14) carries through, leading to an obvious analogue of (20)
including both generators, and parameters αe, βe. The role of h is played by the 3 × 3 Fourier
matrix

f =
1 1 1

1 ω ω2

1 ω2 ω

 ω3 = 1 (22)

and the eigenvalues of the tree operators 
̂T
i , i ∈ {α, β} on Pleaf in the Fourier basis are

computed starting from leaf decorations by cube roots of unity 1, ω, ω2 rather than ±1 as in
the binary split case. (iii) The branching operator δ defined in (10) is a central object whose
implications for phylogenetic branching trees and network models deserve further study.
(It is intimately related to the many-body, second-quantized formulation presented in [7]).
(iv) In particular, objects such as δ(L−1)p(0) or 11 ⊗ · · · δ ⊗ · · · ⊗ 11 ◦ P(t) possess special
properties with respect to entanglement in the multi-taxon tensor space, whose characterization
may provide powerful new tools for phylogenetic analysis.

We defer a formal presentation of further ramifications including generalizations, the
role of Lie symmetries and representation theory in branching models in this context, and
entanglement measures, to a separate work [12].
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